Annotator Response Distributions as a Sampling Frame
Abstract
Annotator disagreement is often dismissed as noise or the result of poor annotation process quality. Others have argued that it can be meaningful. But lacking a rigorous statistical foundation, the analysis of disagreement patterns can resemble a high-tech form of tea-leaf-reading.
We contribute a framework for analyzing the variation of per-item annotator response distributions to data for humans-in-the-loop machine learning. We provide visualizations for, and use the framework to analyze the variance in, a crowdsourced dataset of hard-to-classify examples of the OpenImages archive.
We contribute a framework for analyzing the variation of per-item annotator response distributions to data for humans-in-the-loop machine learning. We provide visualizations for, and use the framework to analyze the variance in, a crowdsourced dataset of hard-to-classify examples of the OpenImages archive.