AI is Not Enough: A Hybrid Technical Approach to AI Adoption in UI Linting with Heuristics

Yuwen Lu
Shona Dutta
Jamie Blass

Abstract

Design systems have become an industry standard for creating consistent, usable, and effective digital interfaces. However, detecting and correcting violations of design system guidelines, known as UI linting, is a major challenge. Manual UI linting is time-consuming and tedious, making it a prime candidate for automation. This paper presents a case study of adopting AI for UI linting. Through collaborative prototyping with UX designers, we analyzed the limitations of existing AI models and identified designers’ core needs and priorities in UI linting. With such knowledge, we designed a hybrid technical pipeline that combines the deterministic nature of heuristics with the flexibility of large language models. Our case study demonstrates that AI alone is not sufficient for practical adoption and highlights the importance of a deep understanding of AI capabilities and user-centered design approaches.