A Theory of Multiple-Source Adaptation with Limited Target Labeled Data
Abstract
We study multiple-source domain adaptation, when the learner has
access to abundant labeled data from multiple source domains and
limited labeled data from the target domain. We analyze existing
algorithms and propose an instance-optimal approach based on model
selection. We provide efficient algorithms and empirically demonstrate
the benefits of our approach.
access to abundant labeled data from multiple source domains and
limited labeled data from the target domain. We analyze existing
algorithms and propose an instance-optimal approach based on model
selection. We provide efficient algorithms and empirically demonstrate
the benefits of our approach.