A Novel Instance Generator for Simulating Middle-Mile Logistics Networks

Petris Matteo
Claudia Archetti
(2024)
Google Scholar

Abstract

To tackle the challenge of optimizing middle-mile logistics, the crucial link between warehouses and final deliveries, we introduce a novel instance generator that aims to create a rich and adaptable dataset of diverse instances to empower researchers and developers. The instance defines a logistics network with hubs, vehicles, routes, lines, and rotations. Additionally, it specifies a list of shipments that need to be transported through this network. To customize the instance, the user can adjust various parameters, such as the number of hubs, density of the space graphs, distribution of shipment weights, or the maximum number of vehicles. The generator reflects real-world complexities through variations in network size and structure. We developed a random graph generator to mimic real-world middle mile networks, by generating space graphs for hubs. Subsequently, lines and routes are randomly constructed on the generated space graphs, while adhering to user-defined constraints. The tool is in the form of an optimized C++ library that enables the generation of instances with a large number of hubs and shipments. It offers the immense potential for advancing middle-mile logistics optimization by providing a comprehensive and adaptable dataset for benchmarking optimization approaches, training machine learning models, and analyzing the impact of network configurations and shipments characteristics on overall efficiency.

Research Areas