- Sameer Agarwal
- Andrew Pryhuber
- Rekha R. Thomas
Abstract
The multiview variety of an arrangement of cameras is the Zariski closure of the images of world points in the cameras. The prime vanishing ideal of this complex projective variety is called the multiview ideal. We show that the bifocal and trifocal polynomials from the cameras generate the multiview ideal when the foci are distinct. In the computer vision literature, many sets of (determinantal) polynomials have been proposed to describe the multiview variety. We establish precise algebraic relationships between the multiview ideal and these various ideals. When the camera foci are noncoplanar, we prove that the ideal of bifocal polynomials saturate to give the multiview ideal. Finally, we prove that all the ideals we consider coincide when dehomogenized, to cut out the space of finite images.
Research Areas
Learn more about how we do research
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work