Abstract
Language models can be augmented with context retriever to incorporate knowl-edge from large external databases. By leveraging retrieved context, the neural net-work does not have to memorize the massive amount of world knowledge within its internal parameters, leading to better parameter efficiency, interpretability and mod-ularity. In this paper we examined a simple yet effective architecture for incorporat-ing external context into language models based on decoupled Encoder-Decoder architecture. We showed that such a simple architecture achieves competitive results on auto-regressive language modeling and open domain question answer-ing tasks. We also analyzed the behavior of the proposed model which performs grounded context transfer. Finally we discussed the computational implications of such retrieval augmented models.
Research Areas
Learn more about how we do research
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work