- Thomas E O'Brien
- Gian-Luca R. Anselmetti
- Fotios Gkritsis
- Vincent Elfving
- Stefano Polla
- William J. Huggins
- Oumarou Oumarou
- Kostyantyn Kechedzhi
- Dmitry Abanin
- Rajeev Acharya
- Igor Aleiner
- Richard Ross Allen
- Trond Ikdahl Andersen
- Kyle Anderson
- Markus Ansmann
- Frank Carlton Arute
- Kunal Arya
- Juan Atalaya
- Dave Bacon
- Joe Bardin
- Andreas Bengtsson
- Sergio Boixo
- Jenna Nicole Bovaird
- Michael Blythe Broughton
- Bob Benjamin Buckley
- Alexandre Bourassa
- Leon Brill
- David A Buell
- Tim Burger
- Brian Burkett
- Nicholas Bushnell
- Jimmy Chen
- Yu Chen
- Benjamin Chiaro
- Desmond Chun Fung Chik
- Josh Godfrey Cogan
- Roberto Collins
- Paul Conner
- William Courtney
- Alex Crook
- Ben Curtin
- Dripto M. Debroy
- Alexander Del Toro Barba
- Sean Demura
- Ilya Drozdov
- Andrew Dunsworth
- Daniel Eppens
- Catherine Erickson
- Lara Faoro
- Edward Farhi
- Reza Fatemi
- Leslie Flores
- Ebrahim Forati
- Austin Fowler
- Brooks Riley Foxen
- William Giang
- Craig Michael Gidney
- Dar Gilboa
- Marissa Giustina
- Alejandro Grajales Dau
- Jonathan Arthur Gross
- Steve Habegger
- Michael C. Hamilton
- Matt P Harrigan
- Sean Harrington
- Catherine Vollgraff Heidweiller
- Jeremy Patterson Hilton
- Markus Rudolf Hoffmann
- Sabrina Hong
- Trent Huang
- Ashley Anne Huff
- Lev Ioffe
- Sergei Isakov
- Justin Thomas Iveland
- Evan Jeffrey
- Cody Jones
- Pavol Juhas
- Dvir Kafri
- Julian Kelly
- Tanuj Khattar
- Mostafa Khezri
- Marika Kieferova
- Seon Kim
- Paul Victor Klimov
- Andrey Klots
- Alexander Korotkov
- Fedor Kostritsa
- John Mark Kreikebaum
- Dave Landhuis
- Pavel Laptev
- Kim Ming Lau
- Lily MeeKit Laws
- Joonho Lee
- Kenny Lee
- Brian Lester
- Alexander T. Lill
- Wayne Liu
- Aditya Locharla
- Erik Lucero
- Fionn Malone
- Orion Martin
- Jarrod Ryan McClean
- Trevor Johnathan Mccourt
- Matt McEwen
- Anthony Megrant
- Xiao Mi
- Kevin Miao
- Masoud Mohseni
- Shirin Montazeri
- Alexis Morvan
- Ramis Movassagh
- Wojtek Mruczkiewicz
- Ofer Naaman
- Matthew Neeley
- Charles Neill
- Ani Nersisyan
- Hartmut Neven
- Michael Newman
- Jiun How Ng
- Anthony Hieu Nguyen
- Murray Nguyen
- Murphy Yuezhen Niu
- Alex Opremcak
- Andre Gregory Petukhov
- Rebecca Potter
- Chris Quintana
- Pedram Roushan
- Daniel Sank
- Kannan Aryaperumal Sankaragomathi
- Kevin Satzinger
- Christopher Schuster
- Mike Shearn
- Aaron Shorter
- Vladimir Shvarts
- Jindra Skruzny
- Vadim Smelyanskiy
- Clarke Smith
- Rolando Diego Somma
- Doug Strain
- Marco Szalay
- Alfredo Torres
- Guifre Vidal
- Benjamin Villalonga
- Bryan W. K. Woo
- Ted White
- Jamie Yao
- Ping Yeh
- Juhwan Yoo
- Grayson Robert Young
- Adam Jozef Zalcman
- Yaxing Zhang
- Ningfeng Zhu
- Nicholas Zobrist
- Christian Gogolin
- Ryan Babbush
- Nicholas Rubin
Abstract
An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Prior to fault-tolerant quantum computing, robust error mitigation strategies are necessary to continue this growth. Here, we study physical simulation within the seniority-zero electron pairing subspace, which affords both a computational stepping stone to a fully correlated model, and an opportunity to validate recently introduced ``purification-based'' error-mitigation strategies. We compare the performance of error mitigation based on doubling quantum resources in time (echo verification) or in space (virtual distillation), on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques (e.g. post-selection); the gain from error mitigation is seen to increase with the system size. Employing these error mitigation strategies enables the implementation of the largest variational algorithm for a correlated chemistry system to-date. Extrapolating performance from these results allows us to estimate minimum requirements for a beyond-classical simulation of electronic structure. We find that, despite the impressive gains from purification-based error mitigation, significant hardware improvements will be required for classically intractable variational chemistry simulations.
Research Areas
Learn more about how we do research
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work