Google Research

Unsupervised Key Event Detection from Massive Text Corpus

Proceedings of The 2022 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining


Automated event detection from news corpora is a crucial task towards mining fast-evolving structured knowledge. As real-world events have different granularities, from the top-level themes to key events and then to event mentions corresponding to concrete actions, there are generally two lines of research: (1) theme detection tries to identify from a news corpus major themes (e.g., “2019 Hong Kong Protests” versus “2020 U.S. Presidential Election”) which have very distinct semantics; and (2) action extraction aims to extract from a single document mention-level actions (e.g., “the police hit the left arm of the protester”) that are often too fine-grained for comprehending the real-world event. In this paper, we propose a new task, key event detection at the intermediate level, which aims to detect from a news corpus key events (e.g., HK Airport Protest on Aug. 12-14), each happening at a particular time/location and focusing on the same topic. This task can bridge event understanding and structuring and is inherently challenging because of (1) the thematic and temporal closeness of different key events and (2) the scarcity of labeled data due to the fast-evolving nature of news articles. To address these challenges, we develop an unsupervised key event detection framework, EvMine, that (1) extracts temporally frequent peak phrases using a novel ttf-itf score, (2) merges peak phrases into event-indicative feature sets by detecting communities from our designed peak phrase graph that captures document cooccurrences, semantic similarities, and temporal closeness signals, and (3) iteratively retrieves documents related to each key event by training a classifier with automatically generated pseudo labels from the event-indicative feature sets and refining the detected key events using the retrieved documents in each iteration. Extensive experiments and case studies show EvMine outperforms all the baseline methods and its ablations on two real-world news corpora.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work