Google Research

Multi-instrument Bayesian reconstruction of plasma shape evolution in C-2W experiment

Physics of Plasmas (2021)


We determined the time-dependent geometry including high-frequency oscillations of the plasma density in TAE’s C2W experiment. This was done as a joint Bayesian reconstruction from a 14-chord FIR interferometer in the midplane, 32 Mirnov probes at the periphery, and 8 shine-through detectors at the targets of the neutral beams. For each point in time we recovered, with credibility intervals: the radial density profile of the plasma; bulk plasma displacement; amplitudes, frequencies and phases of the azimuthal modes n=1 to n=4. Also reconstructed were the radial profiles of the deformations associated with each of the azimuthal modes. Bayesian posterior sampling was done via Hamiltonian Monte Carlo with custom preconditioning. This gave us a comprehensive uncertainty quantification of the reconstructed values, including correlations and some understanding of multimodal posteriors. This method was applied to thousands of experimental shots on C-2W, producing a rich data set for analysis of plasma performance.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work