- Ashkan Norouzi Fard
- Chenglin Fan
- Jakub Tarnawski
- Nikos Parotsidis
- Silvio Lattanzi
- Slobodan Mitrović
- Vincent Pierre Cohen-addad
Abstract
Correlation clustering is a central problem in unsupervised learning, with applications spanning community detection, duplicate detection, automated labeling and many more. In the correlation clustering problem one receives as input a set of nodes and for each node a list of co-clustering preferences, and the goal is to output a clustering that minimizes the disagreement with the specified nodes' preferences. In this paper, we introduce a simple and computationally efficient algorithm for the correlation clustering problem with provable privacy guarantees. Our additive error is stronger than the one shown in prior work and is optimal up to polylogarithmic factors for fixed privacy parameters.
Research Areas
Learn more about how we do research
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work