Google Research

Automatic generation of dense non-rigid optical flow

  • Hoang-An Le
  • Anil Baslamisli
  • Tushar Nimbhorkar
  • Thomas Mensink
  • Sezer Karaoglu
  • Theo Gevers
Computer Vision and Image Understanding (CVIU) (2021)

Abstract

There hardly exists any large-scale datasets with dense optical flow of non-rigid motion from real-world imagery as of today. The reason lies mainly in the required setup to derive ground truth optical flows: a series of images with known camera poses along its trajectory, and an accurate 3D model from a textured scene. Human annotation is not only too tedious for large databases, it can simply hardly contribute to accurate optical flow. To circumvent the need for manual annotation, we propose a framework to automatically generate optical flow from real-world videos. The method extracts and matches objects from video frames to compute initial constraints, and applies a deformation over the objects of interest to obtain dense optical flow fields. We propose several ways to augment the optical flow variations. Extensive experimental results show that training on our automatically generated optical flow outperforms methods that are trained on rigid synthetic data using FlowNet-S, LiteFlowNet, PWC-Net, and RAFT.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work