Google Research

von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning

International Conference on Computer Vision 2021 (to appear)

Abstract

Recent work has argued that classification losses utilizing softmax cross-entropy are superior not only for fixed-set classification tasks, but they outperform losses developed specifically for open-set tasks including few-shot learning and retrieval. Softmax classifiers have been studied using different embedding geometries--Euclidean, hyperbolic, and spherical--and claims have been made about the superiority of one or another, but they have not been systematically compared with careful controls. We conduct an empirical investigation of embedding geometry on softmax losses for a variety of fixed-set classification and image retrieval tasks. Interesting properties observed for the spherical methods lead us to propose a probabilistic classifier based on the von Mises-Fisher distribution, and we show that it is competitive with state-of-the-art methods while producing improved out-of-the-box calibration. We provide guidance regarding the trade-offs between methods and how to choose among them.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work