Google Research

Revenue-Incentive Tradeoffs in Dynamic Reserve Pricing

International Conference on Machine Learning, PMLR (2021), pp. 2601-2610

Abstract

Online advertisements are primarily sold via repeated auctions with reserve prices. In this paper, we study how to set reserves to boost revenue based on the historical bids of strategic buyers, while controlling the impact of such a policy on the incentive compatibility of the repeated auctions. Adopting an incentive compatibility metric which quantifies the incentives to shade bids, we propose a novel class of reserve pricing policies and provide analytical tradeoffs between their revenue performance and bid-shading incentives. The policies are inspired by the exponential mechanism from the literature on differential privacy, but our study uncovers mechanisms with significantly better revenue-incentive tradeoffs than the exponential mechanism in practice. We further empirically evaluate the tradeoffs on synthetic data as well as ad auction data from a major ad exchange to verify and support our theoretical findings.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work