Google Research

On the oracle complexity of strongly convex minimization

Journal of Complexity (2021) (to appear)

Abstract

We construct a family of functions suitable for establishing lower bounds on the oracle complexity of first-order minimization of smooth strongly-convex functions. Based on this construction, we derive new lower bounds on the complexity of strongly-convex minimization under various accuracy criteria. The new bounds match the known upper bounds up to a constant factor, and when the accuracy of a solution is measured by its distance to the solution set, the new lower bound \emph{exactly} matches the upper bound attained by the recent Doubly Optimal Method, thereby establishing the exact complexity for this class of problems.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work