Google Research

Consistent Plug-in Classifiers for Complex Objectives and Constraints

NeurIPS 2020

Abstract

We present a consistent algorithm for constrained classification problems where the objective (e.g. F-measure, G-mean) and the constraints (e.g. demographic parity fairness, coverage) are defined by general functions of the confusion matrix. Our approach reduces the problem into a sequence of plug-in classifier learning tasks. The reduction is achieved by posing the learning problem as an optimization over the intersection of two sets: the set of confusion matrices that are achievable and those that are feasible. This decoupling of the constraint space then allows us to solve the problem using a Frank-Wolfe based algorithm. For objective and constraints that are convex functions of the confusion matrix, our algorithm requires $O(1/\epsilon^2)$ calls to the plug-in subroutine, which improves on the $O(1/\epsilon^3)$ rate needed by the reduction based algorithm of Narasimhan (2018). We show empirically that our algorithm is competitive with prior methods.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work