Google Research

Label-Efficient Learning on Point Clouds using Approximate Convex Decompositions

  • Matheus Gadelha*
  • Aruni Roy Chowdhury*
  • Gopal Sharma
  • Evangelos Kalogerakis
  • Liangliang Cao
  • Erik Learned-Miller
  • Rui Wang
  • Subhransu Maji
European Conference on Computer Vision 2020

Abstract

The problems of shape classification and part segmentation from 3D point clouds have garnered increasing attention in the last few years.But both of these problems suffer from relatively small training sets, creating the need for statistically efficient methods to learn 3D shape representations. In this work, we investigate the use of Approximate Convex Decompositions (ACD) as a self-supervisory signal for label-efficient learning of point cloud representations. Decomposing a 3D shape into simpler constituent parts or primitives is a fundamental problem in geometrical shape processing. There has been extensive work on such decompositions, where the criterion for simplicity of a constituent shape is often defined in terms of convexity for solid primitives. In this paper, we show that using the results of ACD to approximate a ground truth segmentation provides excellent self-supervision for learning 3D point cloud representations that are highly effective on downstream tasks. We report improvements over the state-of-the-art in unsupervised representation learning on the ModelNet40 shape classification dataset and significant gains in few-shot part segmentation on the ShapeNetPart dataset.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work