Google Research

Graph convolutional networks for learning with few clean and many noisy labels

ECCV 2020 (to appear)

Abstract

In this work we consider the problem of learning a classifier from noisy labels when a few clean labeled examples are given. The structure of clean and noisy data is modeled by a graph per class and Graph Convolutional Networks (GCN) are used to predict class relevance of noisy examples. For each class, the GCN is treated as a binary classifier learning to discriminate clean from noisy examples using a weighted binary cross-entropy loss function, and then the GCN-inferred "clean" probability is exploited as a relevance measure. Each noisy example is weighted by its relevance when learning a classifier for the end task. We evaluate our method on an extended version of a few-shot learning problem, where the few clean examples of novel classes are supplemented with additional noisy data. Experimental results show that our GCN-based cleaning process significantly improves the classification accuracy over not cleaning the noisy data and standard few-shot classification where only few clean examples are used. The proposed GCN-based method outperforms the transductive approach (Douze et al., 2018)that is using the same additional data without labels.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work