Google Research

Understanding Unintended Memorization in Federated Learning

Theory and Practice of Differential Privacy (TPDP) 2020 workshop at ACM Conference on Computer and Communications Security (CCS) 2020 (2020)

Abstract

Recent works have shown that generative sequence models (e.g., language models) have a tendency to memorize rare or unique sequences in the training data. Since useful models are often trained on sensitive data, to ensure the privacy of the training data it is critical to identify and mitigate such unintended memorization. Federated Learning (FL) has emerged as a novel framework for large-scale distributed learning tasks. However, it differs in many aspects from the well-studied central learning setting where all the data is stored at the central server. In this paper, we initiate a formal study to understand the effect of different components of canonical FL on unintended memorization in trained models, comparing with the central learning setting. Our results show that several differing components of FL play an important role in reducing unintended memorization. Specifically, we observe that the clustering of data according to users---which happens by design in FL---has a significant effect in reducing such memorization, and using the method of Federated Averaging for training causes a further reduction. We also show that training with a strong user-level differential privacy guarantee results in models that exhibit the least amount of unintended memorization.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work