Google Research

Decoding Molecular Graph Embeddings with Reinforcement Learning

ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Data (2019)

Abstract

We present RL-VAE, a graph-to-graph variational autoencoder that uses reinforcement learning to decode molecular graphs from latent embeddings. Methods have been described previously for graph-to-graph autoencoding, but these approaches require sophisticated discrete decoders that increase the complexity of training and evaluation (such as requiring parallel encoders and decoders or non-trivial graph matching). Here, we repurpose a simple graph generator to enable efficient decoding, generation, and optimization of molecular graphs.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work