Google Research

Discovering User Bias in Ordinal Voting Systems

SAD-2019: Workshop on Subjectivity, Ambiguity and Disagreement

Abstract

Crowdsourcing systems increasingly rely on users to provide more subjective ground truth for intelligent systems - e.g. ratings, aspect of quality and perspectives on how expensive or lively a place feels, etc. We focus on the ubiquitous implementation of online user ordinal voting (e.g 1-5, 1 star-4 stars) on some aspect of an entity, to extract a relative truth, measured by a selected metric such as vote plurality or mean. We argue that this methodology can aggregate results that yield little information to the end user. In particular, ordinal user rankings often converge to a indistinguishable rating. This is demonstrated by the trend in certain cities for the majority of restaurants to all have a 4 star rating. Similarly, the rating of an establishment can be significantly affected by a few users. User bias in voting is not spam, but rather a preference that can be harnessed to provide more information to users. We explore notions of both global skew and user bias. Leveraging these bias and preference concepts, the paper suggests explicit models for better personalization and more informative ratings.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work