Google Research

Predicting Latent Structured Intents from Shopping Queries

WWW (2017)

Abstract

In online shopping, users usually express their intent through search queries. However, these queries are usually in a rather ambiguous form instead of being accurate. For example, it is more likely (and easier) for users to write a query like “high end bike” than “21 speed carbon frames jamis road bike”. It is challenging to interpret these ambiguous queries and thus search result accuracy suffers. A user oftentimes needs to go through the frustrating process of refining search queries or self-teaching from possibly unstructured information. However, shopping is indeed a structured domain, that is composed of category hierarchy, brands, product lines, features, etc. It would have been much better if a shopping site could understand users’ intent through this structure, present organized/structured information, or even find items with the right categories, brands or features for them. In this paper we study the problem of inferring the latent intent from unstructured queries and mapping them to structured attributes. We present a novel framework that jointly learns this knowledge from user consumption behaviors and product metadata. We present a hybrid Long Short term Memory (LSTM) joint model that is accurate and robust, even though user queries are noisy and product catalog is rapidly growing. Our study is conducted on a large-scale dataset from Google Shopping, that is composed of millions of items and user queries along with their click responses. Extensive qualitative and quantitative evaluation shows that the proposed model is more accurate, concise, and robust than multiple possible alternatives.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work