Google Research

A spelling correction model for end-to-end speech recognition

ICASSP (2019)

Abstract

Attention-based sequence-to-sequence models for speech recognition jointly train an acoustic model, language model (LM), and alignment mechanism using a single neural network and require only parallel audio-text pairs. Thus, the language model component of the end-to-end model is only trained on transcribed audio-text pairs, which leads to performance degradation especially on rare words. While there have been a variety of work that look at incorporating an external LM trained on text-only data into the end-to-end framework, none of them have taken into account the characteristic error distribution made by the model. In this paper, we propose a novel approach to utilizing text-only data, by training a spelling correction (SC) model to explicitly correct those errors. On the LibriSpeech dataset, we demonstrate that the proposed model results in an 18.6\% relative improvement in WER over the baseline model when directly correcting top ASR hypothesis, and a 29.0\% relative improvement when further rescoring an expanded n-best list using an external LM.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work