Google Research

Iterative Refinement for Machine Translation

BayLearn (2017)

Abstract

Existing machine translation decoding algorithms generate translations in a strictly monotonic fashion and never revisit previous decisions. As a result, earlier mistakes cannot be corrected at a later stage. In this paper, we present a translation scheme that starts from an initial guess and then makes iterative improvements that may revisit previous decisions. We parameterize our model as a convolutional neural network that predicts discrete substitutions to an existing translation based on an attention mechanism over both the source sentence as well as the current translation output. By making less than one modification per sentence, we improve the output of a phrase-based translation system by up to 0.4 BLEU on WMT15 German-English translation.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work