Google Research

Learning to Write Notes in Electronic Health Records

arxiv (2018)

Abstract

Clinicians spend a significant amount of time inputting free-form textual notes into Electronic Health Records (EHR) systems. Much of this documentation work is seen as a burden, reducing time spent with patients and contributing to clinician burnout. With the aspiration of AI-assisted note-writing, we propose a new language modeling task predicting the content of notes conditioned on past data from a patient's medical record, including patient demographics, labs, medications, and past notes. We train generative models using the public, de-identified MIMIC-III dataset and compare generated notes with those in the dataset on multiple measures. We find that much of the content can be predicted, and that many common templates found in notes can be learned. We discuss how such models can be useful in supporting assistive note-writing features such as error-detection and auto-complete.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work