Google Research

Sequential Operator Splitting for Constrained Nonlinear Optimal Control

American Control Conference (ACC) (2017)


We develop TROSS, a solver for constrained nonsmooth trajectory optimization based on a sequential operator splitting framework. TROSS iteratively improves trajectories by solving a sequence of subproblems setup within evolving trust regions around current iterates using the Alternating Direction Method of Multipliers (ADMM). TROSS achieves consensus among competing objectives, such as finding low-cost dynamically feasible trajectories respecting control limits and safety constraints. A library of building blocks in the form of inexpensive and parallelizable proximal operators associated with trajectory costs and constraints can be used to configure the solver for a variety of tasks. The method shows faster cost reduction compared to iterative Linear Quadratic Regulator (iLQR) and Sequential Quadratic Programming (SQP) on a control-limited vehicle maneuvering task. We demonstrate TROSS on shortest-path navigation of a variant of Dubin’s car in the presence of obstacles, while exploiting passive dynamics of the system. When applied to a constrained robust state estimation problem involving nondifferentiable nonconvex penalties, TROSS shows less susceptibility to non-Gaussian dynamics disturbances and measurement outliers in comparison to an Extended Kalman smoother. Unlike generic SQP methods, our approach produces time-varying linear feedback control policies even for constrained control tasks. The solver is potentially suitable for nonlinear model predictive control and moving horizon state estimation in embedded systems.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work