Google Research

AdaNet: Adaptive structural learning of artificial neural networks

Proceedings of the 34th International Conference on Machine Learning (ICML 2017). Sydney, Australia, August 2017. (2017)

Abstract

We present new algorithms for adaptively learning artificial neural networks. Our algorithms (ADANET) adaptively learn both the structure of the network and its weights. They are based on a solid theoretical analysis, including data-dependent generalization guarantees that we prove and discuss in detail. We report the results of large-scale experiments with one of our algorithms on several binary classification tasks extracted from the CIFAR-10 dataset and on the Criteo dataset. The results demonstrate that our algorithm can automatically learn network structures with very competitive performance accuracies when compared with those achieved by neural networks found by standard approaches.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work