- He Zhou
- Sunil P. Khatri
- Jiang Hu
- Frank Liu
- Cliff Sze
Abstract
By employing Optimal Bayesian Robust (OBR), Bayesian Markov Decision Process (BMDP) can be a power optimization method to solve large problems. However, due to the “curse of dimensionality”, the data storage limitation hinders the practical application of BMDP. To overcome this impediment, we propose a novel Improved Compressed Sparse Row (ICSR) data structure in this paper, and developed the implementation of BMDP solver with ICSR technique on a heterogeneous platform with GPU. The simulation results demonstrate that our techniques achieve about a 5× reduction in memory utilization over using full matrix, and an average speedup of 4.1× over using full matrix. Additionally, we present a study of the tradeoff between the runtime and the trends of result difference between our ICSR techniques and using full matrix.
Research Areas
Learn more about how we do research
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work