Google Research

A Minimalistic Approach to Sum-Product Network Learning for Real Applications

  • Moshe Looks
  • Viktoriya Krakovna
ICLR 2016 Workshop Track

Abstract

Sum-Product Networks (SPNs) are a class of expressive yet tractable hierarchical graphical models. LearnSPN is a structure learning algorithm for SPNs that uses hierarchical co-clustering to simultaneously identifying similar entities and similar features. The original LearnSPN algorithm assumes that all the variables are discrete and there is no missing data. We introduce a practical, simplified version of LearnSPN, MiniSPN, that runs faster and can handle missing data and heterogeneous features common in real applications. We demonstrate the performance of MiniSPN on standard benchmark datasets and on two datasets from Google’s Knowledge Graph exhibiting high missingness rates and a mix of discrete and continuous features.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work