Google Research

Plato: A Selective Context Model for Entity Resolution

Transactions of the Association for Computational Linguistics, vol. 3 (2015), pp. 503-515

Abstract

We present Plato, a probabilistic model for entity resolution that includes a novel approach for handling noisy or uninformative features,and supplements labeled training data derived from Wikipedia with a very large unlabeled text corpus. Training and inference in the proposed model can easily be distributed across many servers, allowing it to scale to over 10^7 entities. We evaluate Plato on three standard datasets for entity resolution. Our approach achieves the best results to-date on TAC KBP 2011 and is highly competitive on both the CoNLL 2003 and TAC KBP 2012 datasets.

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work