Google Research

Unconstrained Online Linear Learning in Hilbert Spaces: Minimax Algorithms and Normal Approximations

Proceedings of the 27th Annual Conference on Learning Theory (COLT) (2014)


We study algorithms for online linear optimization in Hilbert spaces, focusing on the case where the player is unconstrained. We develop a novel characterization of a large class of minimax algorithms, recovering, and even improving, several previous results as immediate corollaries. Moreover, using our tools, we develop an algorithm that provides a regret bound of $O(U \sqrt{T \log( U \sqrt{T} \log^2 T +1)})$, where $U$ is the $L_2$ norm of an arbitrary comparator and both $T$ and $U$ are unknown to the player. This bound is optimal up to $\sqrt{\log \log T}$ terms. When $T$ is known, we derive an algorithm with an optimal regret bound (up to constant factors). For both the known and unknown $T$ case, a Normal approximation to the conditional value of the game proves to be the key analysis tool.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work