Google Research

Local Collaborative Ranking

Proceedings of the 23rd International World Wide Web Conference (WWW), ACM (2014)

Abstract

Personalized recommendation systems are used in a wide variety of applications such as electronic commerce, social networks, web search, and more. Collaborative filtering approaches to recommendation systems typically assume that the rating matrix (e.g., movie ratings by viewers) is low-rank. In this paper, we examine an alternative approach in which the rating matrix is \emph{locally low-rank}. Concretely, we assume that the rating matrix is low-rank within certain neighborhoods of the metric space defined by (user, item) pairs. We combine a recent approach for local low-rank approximation based on the Frobenius norm with a general empirical risk minimization for ranking losses. Our experiments indicate that the combination of a mixture of local low-rank matrices each of which was trained to minimize a ranking loss outperforms many of the currently used state-of-the-art recommendation systems. Moreover, our method is easy to parallelize, making it a viable approach for large scale real-world rank-based recommendation systems.

Research Areas

Learn more about how we do research

We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work