Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10129 publications
    Quartic Quantum Speedups for Planted Inference Problems
    Alexander Schmidhuber
    Ryan O'Donnell
    arXiv:2406.19378 (2024)
    Preview abstract We describe a quantum algorithm for the Planted Noisy kXOR problem (also known as sparse Learning Parity with Noise) that achieves a nearly quartic (4th power) speedup over the best known classical algorithm while also only using logarithmically many qubits. Our work generalizes and simplifies prior work of Hastings, by building on his quantum algorithm for the Tensor Principal Component Analysis (PCA) problem. We achieve our quantum speedup using a general framework based on the Kikuchi Method (recovering the quartic speedup for Tensor PCA), and we anticipate it will yield similar speedups for further planted inference problems. These speedups rely on the fact that planted inference problems naturally instantiate the Guided Sparse Hamiltonian problem. Since the Planted Noisy kXOR problem has been used as a component of certain cryptographic constructions, our work suggests that some of these are susceptible to super-quadratic quantum attacks. View details
    PriorBoost: An Adaptive Algorithm for Learning from Aggregate Responses
    Adel Javanmard
    Proceedings of the 41st International Conference on Machine Learning (2024), pp. 21410-21429
    Preview abstract This work studies algorithms for learning from aggregate responses. We focus on the construction of aggregation sets (called \emph{bags} in the literature) for event-level loss functions. We prove for linear regression and generalized linear models (GLMs) that the optimal bagging problem reduces to one-dimensional size-constrained $k$-means clustering. Further, we theoretically quantify the advantage of using curated bags over random bags. We propose the \texttt{PriorBoost} algorithm, which iteratively forms increasingly homogenous bags with respect to (unseen) individual responses to improve model quality. We also explore label differential privacy for aggregate learning, and provide extensive experiments that demonstrate that \PriorBoost regularly achieves optimal quality, in contrast to non-adaptive algorithms for aggregate learning. View details
    Preview abstract The federated learning paradigm has motivated the development of methods for aggregating multiple client updates into a global server model, without sharing client data. Many federated learning algorithms, including the canonical Federated Averaging (FedAvg), take a direct (possibly weighted) average of the client parameter updates, motivated by results in distributed optimization. In this work, we adopt a function space perspective and propose a new algorithm, FedFish, that aggregates local approximations to the functions learned by clients, using an estimate based on their Fisher information. We evaluate FedFish on realistic, large-scale cross-device benchmarks. While the performance of FedAvg can suffer as client models drift further apart, we demonstrate that FedFish is more robust to longer local training. Our evaluation across several settings in image and language benchmarks shows that FedFish outperforms FedAvg as local training epochs increase. Further, FedFish results in global networks that are more amenable to efficient personalization via local fine-tuning on the same or shifted data distributions. For instance, federated pretraining on the C4 dataset, followed by few-shot personalization on Stack Overflow, results in a 7% improvement in next-token prediction by FedFish over FedAvg. View details
    TextMesh: Generation of Realistic 3D Meshes From Text Prompts
    Christina Tsalicoglou
    Fabian Manhardt
    Michael Niemeyer
    3DV 2024 (2024)
    Preview abstract The ability to generate highly realistic 2D images from mere text prompts has recently made huge progress in terms of speed and quality, thanks to the advent of image diffusion models. Naturally, the question arises if this can be also achieved in the generation of 3D content from such text prompts. To this end, a new line of methods recently emerged trying to harness diffusion models, trained on 2D images, for supervision of 3D model generation using view dependent prompts. While achieving impressive results, these methods, however, have two major drawbacks. First, rather than commonly used 3D meshes, they instead generate neural radiance fields (NeRFs), making them impractical for most real applications. Second, these approaches tend to produce over-saturated models, giving the output a cartoonish looking effect. Therefore, in this work we propose a novel method for generation of highly realistic-looking 3D meshes. To this end, we extend NeRF to employ an SDF backbone, leading to improved 3D mesh extraction. In addition, we propose a novel way to finetune the mesh texture, removing the effect of high saturation and improving the details of the output 3D mesh. View details
    Content-based Graph Reconstruction for Cold-start item recommendation
    Jinri Kim
    Eunji Kim
    Kwangeun Yeo
    Yujin Jeon
    Chanwoo Kim
    Sewon Lee
    (2024)
    Preview abstract Graph convolutions have been successfully applied to recommendation systems, utilizing high-order collaborative signals present in the user-item interaction graph. This idea, however, has not been applicable to the cold-start items, since cold nodes are isolated in the graph and thus do not take advantage of information exchange from neighboring nodes. Recently, there have been a few attempts to utilize graph convolutions on item-item or user-user attribute graphs to capture high-order collaborative signals for cold-start cases, but these approaches are still limited in that the item-item or user-user graph falls short in capturing the dynamics of user-item interactions, as their edges are constructed based on arbitrary and heuristic attribute similarity. In this paper, we introduce Content-based Graph Reconstruction for Cold-start item recommendation (CGRC), employing a masked graph autoencoder structure and multimodal contents to directly incorporate interaction-based high-order connectivity, applicable even in cold-start scenarios. To address the cold-start items directly on the interaction-based graph, our approach trains the model to reconstruct plausible user-item interactions from masked edges of randomly chosen cold items, simulating fresh items without connection to users. This strategy enables the model to infer potential edges for unseen cold-start nodes. Extensive experiments on real-world datasets demonstrate the superiority of the proposed model. View details
    Federated Variational Inference: Towards Improved Personalization and Generalization
    Elahe Vedadi
    Josh Dillon
    Philip Mansfield
    Karan Singhal
    Arash Afkanpour
    Warren Morningstar
    AAAI Federated Learning on the Edge Symposium (2024)
    Preview abstract Conventional federated learning algorithms train a single global model by leveraging all participating clients' data. However, due to heterogeneity in client generative distributions and predictive models, these approaches may not appropriately approximate the predictive process, converge to an optimal state, or generalize to new clients. We study personalization and generalization in stateless cross-device federated learning setups assuming heterogeneity in client data distributions and predictive models. We first propose a hierarchical generative model and formalize it using Bayesian Inference. We then approximate this process using Variational Inference to train our model efficiently. We call this algorithm Federated Variational Inference (FedVI). We use PAC-Bayes analysis to provide generalization bounds for FedVI. We evaluate our model on FEMNIST and CIFAR-100 image classification and show that FedVI beats the state-of-the-art on both tasks. View details
    BigLake: BigQuery’s Evolution toward a Multi-Cloud Lakehouse
    Justin Levandoski
    Garrett Casto
    Mingge Deng
    Rushabh Desai
    Thibaud Hottelier
    Amir Hormati
    Jeff Johnson
    Dawid Kurzyniec
    Prem Ramanathan
    Gaurav Saxena
    Vidya Shanmugam
    Yuri Volobuev
    SIGMOD (2024)
    Preview abstract BigQuery’s cloud-native disaggregated architecture has allowed Google Cloud to evolve the system to meet several customer needs across the analytics and AI/ML workload spectrum. A key customer requirement for BigQuery centers around the unification of data lake and enterprise data warehousing workloads. This approach combines: (1) the need for core data management primitives, e.g., security, governance, common runtime metadata, performance acceleration, ACID transactions, provided by an enterprise data warehouses coupled with (2) harnessing the flexibility of the open source format and analytics ecosystem along with new workload types such as AI/ML over unstructured data on object storage. In addition, there is a strong requirement to support BigQuery as a multi-cloud offering given cloud customers are opting for a multi-cloud footprint by default. This paper describes BigLake, an evolution of BigQuery toward a multi-cloud lakehouse to address these customer requirements in novel ways. We describe three main innovations in this space. We first present BigLake tables, making open-source table formats (e.g., Apache Parquet, Iceberg) first class citizens, providing fine-grained governance enforcement and performance acceleration over these formats to BigQuery and other open-source analytics engines. Next, we cover the design and implementation of BigLake Object tables that allow BigQuery to integrate AI/ML for inferencing and processing over unstructured data. Finally, we present Omni, a platform for deploying BigQuery on non-GCP clouds, focusing on the infrastructure and operational innovations we made to provide an enterprise lakehouse product regardless of the cloud provider hosting the data. View details
    Design Principles and Challenges for Gaze + Pinch Interaction in XR
    Ken Pfeuffer
    Hans Gellersen
    IEEE Computer Graphics and Applications (2024)
    Preview abstract For Extended Reality (XR) headsets, a key aim is the natural interaction in 3D space beyond what traditional methods of keyboard, mouse, and touchscreen can offer. With the release of the Apple Vision Pro, a novel interaction paradigm is now widely available where users seamlessly navigate content through the combined use of their eyes and hands. However, blending these modalities poses unique design challenges due to their dynamic nature and the absence of established principles and standards. In this article, we present five design principles and issues for the Gaze + Pinch interaction technique, informed by eye-hand research in the human-computer interaction field. The design principles encompass mechanisms like division of labor and minimalistic timing, which are crucial for usability, alongside enhancements for the manipulation of objects, indirect interactions, and drag & drop. Whether in design, technology, or research domains, this exploration offers valuable perspectives for navigating the evolving landscape of 3D interaction. View details
    Neural Speech and Audio Coding
    Minje Kim
    IEEE Signal Processing Magazine (2024) (to appear)
    Preview abstract This paper explores the integration of model-based and data-driven approaches within the realm of neural speech and audio coding systems. It highlights the challenges posed by the subjective evaluation processes of speech and audio codecs and discusses the limitations of purely data-driven approaches, which often require inefficiently large architectures to match the performance of model-based methods. The study presents hybrid systems as a viable solution, offering significant improvements to the performance of conventional codecs through meticulously chosen design enhancements. Specifically, it introduces a neural network-based signal enhancer designed to post-process existing codecs’ output, along with the autoencoder-based end-to-end models and LPCNet—hybrid systems that combine linear predictive coding (LPC) with neural networks. Furthermore, the paper delves into predictive models operating within custom feature spaces (TF-Codec) or predefined transform domains (MDCTNet) and examines the use of psychoacoustically calibrated loss functions to train end-to-end neural audio codecs. Through these investigations, the paper demonstrates the potential of hybrid systems to advance the field of speech and audio coding by bridging the gap between traditional model-based approaches and modern data-driven techniques. View details
    Preview abstract This workshop discusses the cutting-edge developments in research and applications of personalizing large language models (LLMs) and adapting them to the demands of diverse user populations and societal needs. The full-day workshop plan includes several keynotes and invited talks, a poster session and a panel discussion. View details
    Preview abstract Recently proposed long-form question answering (QA) systems, supported by large language models (LLMs), have shown promising capabilities. Yet, attributing and verifying their generated abstractive answers can be difficult, and automatically evaluating their accuracy remains an ongoing challenge. In this paper, we introduce a new QA task for answering multi-answer questions by summarizing multiple diverse sources in a semi-extractive fashion. Specifically, Semi-extractive Multi-source QA (SEMQA) requires models to output a comprehensive answer while mixing between factual quoted spans---copied verbatim from given input sources---and non-factual free-text connectors that glue these spans together into a single cohesive passage. This setting bridges the gap between the outputs of well-grounded but constrained extractive QA systems and more fluent but harder to attribute fully abstractive answers. Particularly, it enables a new mode for language models that leverages their advanced language generation capabilities, while also producing fine in-line attributions by-design that are easy to verify, interpret, and evaluate. To study this task, we create the first dataset of this kind with human-written semi-extractive answers to natural and generated questions, and define text-based evaluation metrics. Experimenting with several LLMs in various settings, we find this task to be surprisingly challenging, demonstrating the importance of our work for developing and studying such consolidation capabilities. View details
    PRewrite: Prompt Rewriting with Reinforcement Learning
    Qiaozhu Mei
    Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (2024) (to appear)
    Preview abstract Prompt engineering is critical for the development of LLM-based applications. However, it is usually done manually in a "trial and error" fashion that can be time consuming, ineffective, and sub-optimal. Even for the prompts which seemingly work well, there is always a lingering question: can the prompts be made better with further modifications? To address these problems, we investigate automated prompt engineering in this paper. Specifically, we propose PRewrite, an automated method to rewrite an under-optimized prompt to a more effective prompt. We instantiate the prompt rewriter using an LLM. The rewriter LLM is trained using reinforcement learning to optimize the performance on a given downstream task. We conduct experiments on diverse benchmark datasets, which demonstrates the effectiveness of PRewrite. View details
    See Through Vehicles: Fully Occluded Vehicle Detection with Millimeter Wave Radar
    Chenming He
    Chengzhen Meng
    Chunwang He
    Beibei Wang
    Yubo Yan
    Yanyong Zhang
    MobiCom 2024: The 30th Annual International Conference On Mobile Computing And Networking
    Preview abstract A crucial task in autonomous driving is to continuously detect nearby vehicles. Problems thus arise when a vehicle is occluded and becomes “unseeable”, which may lead to accidents. In this study, we develop mmOVD, a system that can detect fully occluded vehicles by involving millimeter-wave radars to capture the ground-reflected signals passing beneath the blocking vehicle’s chassis. The foremost challenge here is coping with ghost points caused by frequent multi-path reflections, which highly resemble the true points. We devise a set of features that can efficiently distinguish the ghost points by exploiting the neighbor points’ spatial and velocity distributions. We also design a cumulative clustering algorithm to effectively aggregate the unstable ground reflected radar points over consecutive frames to derive the bounding boxes of the vehicles. We have evaluated mmOVD in both controlled environments and real-world environments. In an underground garage and two campus roads, we conducted controlled experiments in 56 scenes with 8 vehicles, including a minibus and a motorcycle. Our system accurately detects occluded vehicles for the first time, with a 91.1% F1 score for occluded vehicle detection and a 100% success rate for occlusion event detection. More importantly, we drove 324km on crowded roads at a speed up to 70km per hour and show we could achieve an occlusion detection success rate of 92% and a low false alarm rate of 4% with only 10% of the training data in complex real-world environments. View details
    Optimizing quantum gates towards the scale of logical qubits
    Alexandre Bourassa
    Andrew Dunsworth
    Will Livingston
    Vlad Sivak
    Trond Andersen
    Yaxing Zhang
    Desmond Chik
    Jimmy Chen
    Charles Neill
    Alejo Grajales Dau
    Anthony Megrant
    Alexander Korotkov
    Vadim Smelyanskiy
    Yu Chen
    Nature Communications, 15 (2024), pp. 2442
    Preview abstract A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two major challenges that could become fundamental roadblocks are manufacturing high-performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dynamic control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors. When combined with a comprehensive model of physical errors across our processor, the strategy suppresses physical error rates by ~3.7× compared with the case of no optimization. Furthermore, it is projected to achieve a similar performance advantage on a distance-23 surface code logical qubit with 1057 physical qubits. Our control optimization strategy solves a generic scaling challenge in a way that can be adapted to a variety of quantum operations, algorithms, and computing architectures. View details
    SoothSayer: Bypassing DSAC Mitigation by Predicting Counter Replacement
    Salman Qazi
    Fourth Workshop on DRAM Security (DRAMSec) (2024)
    Preview abstract In-DRAM Stochastic and Approximate Counting (DSAC) is a recently published algorithm that aims to mitigate Rowhammer at low cost. Existing in-DRAM counter-based schemes keep track of row activations and issue Targeted Row Refresh (TRR) upon detecting a concerning pattern. However, due to insufficiency of the tracking ability they are vulnerable to attacks utilizing decoy rows. DSAC claims to improve upon existing TRR mitigation by filtering out decoy-row accesses, so they cannot saturate the limited number of counters available for detecting Rowhammer, promising a reliable mitigation without the area cost of deterministic and provable schemes such as per-row activation counting (PRAC). In this paper, we analyze DSAC and discover some gaps that make it vulnerable to Rowhammer and Rowpress attacks. The main focus of this work is a novel attack named SoothSayer that targets the counter replacement policy in DSAC by cloning the random number generator. We describe and simulate this attack, and establish its efficacy. Finally, we discuss other weaknesses in DSAC. View details