Harrison Lee
Research Areas
Authored Publications
Sort By
Conversational Recommendation as Retrieval: A Simple, Strong Baseline
Renat Aksitov
Simral Chaudhary
5th Workshop on NLP for Conversational AI (2023)
Preview abstract
Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation. However, most CRS approaches do not effectively utilize the signal provided by these conversations. They rely heavily on explicit external knowledge e.g., knowledge graphs to augment the models' understanding of the items and attributes, which is quite hard to scale. To alleviate this, we propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task, where we represent conversations as queries and items as documents to be retrieved. We expand the document representation used for retrieval with conversations from the training set. With a simple BM25-based retriever, we show that our task formulation compares favorably with much more complex baselines using complex external knowledge on a popular CRS benchmark. We demonstrate further improvements using user-centric modeling and data augmentation to counter the cold start problem for CRSs.
View details
Preview abstract
Building universal dialogue systems that operate across multiple domains/APIs and generalize to new ones with minimal overhead is a critical challenge. Recent works have leveraged natural language descriptions of schema elements to enable such systems; however, descriptions only indirectly convey schema semantics. In this work, we propose Show, Don't Tell, which prompts seq2seq models with a labeled example dialogue to show the semantics of schema elements rather than tell the model through descriptions. While requiring similar effort from service developers as generating descriptions, we show that using short examples as schema representations with large language models results in state-of-the-art performance on two popular dialogue state tracking benchmarks designed to measure zero-shot generalization - the Schema-Guided Dialogue dataset and the MultiWOZ leave-one-out benchmark.
View details
SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems
Bin Zhang
AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (2022)
Preview abstract
Zero/few-shot transfer to unseen services is a critical challenge in task-oriented dialogue research. The Schema-Guided Dialogue (SGD) dataset introduced a paradigm for enabling models to support any service in zero-shot through schemas, which describe service APIs to models in natural language. We explore the robustness of dialogue systems to linguistic variations in schemas by designing SGD-X - a benchmark extending SGD with semantically similar yet stylistically diverse variants for every schema. We observe that two top state tracking models fail to generalize well across schema variants, measured by joint goal accuracy and a novel metric for measuring schema sensitivity. Additionally, we present a simple model-agnostic data augmentation method to improve schema robustness.
View details
Description-Driven Task-Oriented Dialog Modeling
Dian Yu
Mingqiu Wang
ACL (2022)
Preview abstract
Task-oriented dialogue (TOD) systems are required to identify key information from conversations for the completion of given tasks. Such information is conventionally specified in terms of intents and slots contained in task-specific ontology or schemata. Since these schemata are designed by system developers, the naming convention for slots and intents is not uniform across tasks, and may not convey their semantics effectively. This can lead to models memorizing arbitrary patterns in data, resulting in suboptimal performance and generalization. In this paper, we propose that schemata should be modified by replacing names or notations entirely with natural language descriptions. We show that a language description-driven system exhibits better understanding of task specifications, higher performance on state tracking, improved data efficiency, and effective zero-shot transfer to unseen tasks. Following this paradigm, we present a simple yet effective Description-Driven Dialog State Tracking (D3ST) model, which relies purely on schema descriptions and an "index-picking" mechanism. We demonstrate the superiority in quality, data efficiency and robustness of our approach as measured on the MultiWOZ (Budzianowski et al.,2018), SGD (Rastogi et al., 2020), and the recent SGD-X (Lee et al., 2021) benchmarks.
View details