Abhinav Rastogi
Research Areas
Authored Publications
Sort By
Conversational Recommendation as Retrieval: A Simple, Strong Baseline
Renat Aksitov
Simral Chaudhary
5th Workshop on NLP for Conversational AI (2023)
Preview abstract
Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation. However, most CRS approaches do not effectively utilize the signal provided by these conversations. They rely heavily on explicit external knowledge e.g., knowledge graphs to augment the models' understanding of the items and attributes, which is quite hard to scale. To alleviate this, we propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task, where we represent conversations as queries and items as documents to be retrieved. We expand the document representation used for retrieval with conversations from the training set. With a simple BM25-based retriever, we show that our task formulation compares favorably with much more complex baselines using complex external knowledge on a popular CRS benchmark. We demonstrate further improvements using user-centric modeling and data augmentation to counter the cold start problem for CRSs.
View details
Description-Driven Task-Oriented Dialog Modeling
Dian Yu
Mingqiu Wang
Preview abstract
Task-oriented dialogue (TOD) systems are required to identify key information from conversations for the completion of given tasks. Such information is conventionally specified in terms of intents and slots contained in task-specific ontology or schemata. Since these schemata are designed by system developers, the naming convention for slots and intents is not uniform across tasks, and may not convey their semantics effectively. This can lead to models memorizing arbitrary patterns in data, resulting in suboptimal performance and generalization. In this paper, we propose that schemata should be modified by replacing names or notations entirely with natural language descriptions. We show that a language description-driven system exhibits better understanding of task specifications, higher performance on state tracking, improved data efficiency, and effective zero-shot transfer to unseen tasks. Following this paradigm, we present a simple yet effective Description-Driven Dialog State Tracking (D3ST) model, which relies purely on schema descriptions and an "index-picking" mechanism. We demonstrate the superiority in quality, data efficiency and robustness of our approach as measured on the MultiWOZ (Budzianowski et al.,2018), SGD (Rastogi et al., 2020), and the recent SGD-X (Lee et al., 2021) benchmarks.
View details
SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems
Bin Zhang
AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (2022)
Preview abstract
Zero/few-shot transfer to unseen services is a critical challenge in task-oriented dialogue research. The Schema-Guided Dialogue (SGD) dataset introduced a paradigm for enabling models to support any service in zero-shot through schemas, which describe service APIs to models in natural language. We explore the robustness of dialogue systems to linguistic variations in schemas by designing SGD-X - a benchmark extending SGD with semantically similar yet stylistically diverse variants for every schema. We observe that two top state tracking models fail to generalize well across schema variants, measured by joint goal accuracy and a novel metric for measuring schema sensitivity. Additionally, we present a simple model-agnostic data augmentation method to improve schema robustness.
View details
Preview abstract
Building universal dialogue systems that operate across multiple domains/APIs and generalize to new ones with minimal overhead is a critical challenge. Recent works have leveraged natural language descriptions of schema elements to enable such systems; however, descriptions only indirectly convey schema semantics. In this work, we propose Show, Don't Tell, which prompts seq2seq models with a labeled example dialogue to show the semantics of schema elements rather than tell the model through descriptions. While requiring similar effort from service developers as generating descriptions, we show that using short examples as schema representations with large language models results in state-of-the-art performance on two popular dialogue state tracking benchmarks designed to measure zero-shot generalization - the Schema-Guided Dialogue dataset and the MultiWOZ leave-one-out benchmark.
View details
UIBert: Learning Generic Multimodal Representations for UI Understanding
Chongyang Bai
Srinivas Kumar Sunkara
Xiaoxue Zang
Ying Xu
the 30th International Joint Conference on Artificial Intelligence (IJCAI-21) (2021)
Preview abstract
To improve the accessibility of smart devices and to simplify their usage, building models which understand user interfaces (UIs) and assist users to complete their tasks is critical. However, unique challenges are proposed by UI-specific characteristics, such as how to effectively leverage multimodal UI features that involve image, text, and structural metadata and how to achieve good performance when high-quality labeled data is unavailable. To address such challenges we introduce UIBert, a transformer-based joint image-text model trained through novel pre-training tasks on large-scale unlabeled UI data to learn generic feature representations for a UI and its components. Our key intuition is that the heterogeneous features in a UI are self-aligned, i.e., the image and text features of UI components, are predictive of each other. We propose five pretraining tasks utilizing this self-alignment among different features of a UI component and across various components in the same UI. We evaluate our method on nine real-world downstream UI tasks where UIBert outperforms strong multimodal baselines by up to 9.26% accuracy.
View details
Template Guided Text Generation for Task-Oriented Dialogue
Mihir Sanjay Kale
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)
Preview abstract
Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency.
View details
Schema-Guided Dialogue State Tracking Task at DSTC8
Xiaoxue Zang
Srinivas Kumar Sunkara
Pranav Khaitan
AAAI Dialog System Technology Challenges Workshop (2020) (to appear)
Preview abstract
This paper gives an overview of the Schema-Guided Dialogue State Tracking task of the 8th Dialogue System Technology Challenge. The goal of this task is to develop dialogue state tracking models suitable for large-scale virtual assistants, with a focus on data-efficient joint modeling across domains and zero-shot generalization to new APIs. This task provided a new dataset consisting of over 16000 dialogues in the training set spanning 16 domains to highlight these challenges, and a baseline model capable of zero-shot generalization to new APIs. Twenty-five teams participated, developing a range of neural network models, exceeding the performance of the baseline model by a very high margin. The submissions incorporated a variety of pre-trained encoders and data augmentation techniques. This paper describes the task definition, dataset and evaluation methodology. We also summarize the approach and results of the submitted systems to highlight the overall trends in the state-of-the-art.
View details
MultiWOZ 2.2 : A Dialogue Dataset with Additional Annotation Corrections and State Tracking Baselines
Xiaoxue Zang
Srinivas Sunkara
Jianguo Zhang
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI (2020), pp. 109-117
Preview abstract
MultiWOZ is a well-known task-oriented dialogue dataset containing over 10,000 annotated dialogues spanning 8 domains. It is extensively used as a benchmark for dialogue state tracking. However, recent works have reported presence of substantial noise in the dialogue state annotations. MultiWOZ 2.1 identified and fixed many of these erroneous annotations and user utterances, resulting in an improved version of this dataset. This work introduces MultiWOZ 2.2, which is a yet another improved version of this dataset. Firstly, we identify and fix dialogue state annotation errors across 17.3% of the utterances on top of MultiWOZ 2.1. Secondly, we redefine the ontology by disallowing vocabularies of slots with a large number of possible values (e.g., restaurant name, time of booking). In addition, we introduce slot span annotations for these slots to standardize them across recent models, which previously used custom string matching heuristics to generate them. We also benchmark a few state of the art dialogue state tracking models on the corrected dataset to facilitate comparison for future work. In the end, we discuss best practices for dialogue data collection that can help avoid annotation errors.
View details
Text-to-Text Pre-Training for Data-to-Text Tasks
Mihir Sanjay Kale
Proceedings of the 13th International Conference on Natural Language Generation (INLG 2020)
Preview abstract
We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5 (Raffel et al., 2019), enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored for data-to-text generation, as well as alternatives such as BERT and GPT-2. Importantly, T5 pre-training leads to better generalization, as evidenced by large improvements on out-of-domain test sets. We hope our work serves as a useful baseline for future research, as transfer learning becomes ever more prevalent for data-to-text tasks.
View details
DEEPCOPY: Grounded Response Generation with Hierarchical Pointer Networks
Semih Yavuz
Guan-Lin Chao
Dilek Hakkani-Tur
Proceedings of SIGdial (2019) (to appear)
Preview abstract
Recent advances in neural sequence-to-sequence models have led to promising
results for several downstream generation-based natural language processing tasks
including dialogue response generation, summarization, and machine translation.
However, these models are known to have several problems, especially in the
context of chit-chat based dialogue systems: they tend to generate short and dull
responses that are often too generic. Furthermore, these models do not ground
conversational responses on knowledge and facts, resulting in turns that are not
informative and engaging for users. These indeed are the essential features that
dialogue response generation models should be equipped with to serve in more
realistic and useful conversational applications. Recently, several dialogue datasets
accompanied with relevant external knowledge have been released to facilitate
research into remedying such issues encountered by traditional models by resorting
to this additional information. In this paper, we propose and experiment with
a series of response generation models that aim to serve in the general scenario
where in addition to the dialogue context, relevant unstructured external knowledge
in the form of text is also assumed to be available for models to harness. We
empirically show the effectiveness of the proposed model compared to several
baselines on CONVAI2 challenge.
View details