Jump to Content
Sayna Ebrahimi

Sayna Ebrahimi

Sayna Ebrahimi joined Google Cloud AI Research as a research scientist in November 2021. Her research focuses on tackling real-world large-scale multimodal data distributions while maximizing adaptation and generalization. She also develops label-efficient algorithms which reduce human effort while facilitate transfer of information through unsupervised and semi-supervised models. She received her PhD from UC Berkeley advised by Trevor Darrell. At Berkeley, her research was at the intersection of computer vision and machine learning with specialization in continual learning and domain adaptation.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract For visual document understanding (VDU), self-supervised pretraining has been shown to successfully generate transferable representations, yet, effective adaptation of such representations to distribution shifts at test-time remains to be an unexplored area. We propose DocTTA, a novel test-time adaptation method for documents, that does source-free domain adaptation using unlabeled target document data. DocTTA leverages cross-modality self-supervised learning via masked visual language modeling, as well as pseudo labeling to adapt models learned on a source domain to an unlabeled target domain at test time. We introduce new benchmarks using existing public datasets for various VDU tasks, including entity recognition, key-value extraction, and document visual question answering. DocTTA shows significant improvements on these compared to the source model performance, up to 1.89% in (F1 score), 3.43% (F1 score), and 17.68% (ANLS score), respectively. View details
    Preview abstract Multimodal large-scale pretraining has shown impressive performance gains for unstructured data including language, image, audio, and video. Yet, the scenario prominent in real-world applications is the existence of combination of structured (including tabular and time-series) and unstructured data in conjunction, and it has been understudied. Towards this end, we propose LANISTR, a novel attention-based framework to learn from LANguage, Image, and STRuctured data. We introduce a new multimodal fusion module with a similarity-based multimodal masking loss that enables LANISTR to learn cross-modal relations from large-scale multimodal data with missing modalities during training and test time. On two publicly available MIMIC-IV and Amazon Product Review datasets, LANISTR achieves absolute improvements of 6.47% (AUROC) and 8.35% (accuracy), respectively, compared to the state-of-the-art multimodal models, while showing superior generalization capabilities. View details
    Preview abstract Continual learning aims to enable a single model to learn a sequence of tasks without catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store past pristine examples for experience replay, which, however, limits their practical value due to privacy and memory constraints. In this work, we present a simple yet effective framework, DualPrompt, which learns a tiny set of parameters, called prompts, to properly instruct a pre-trained model to learn tasks arriving sequentially without buffering past examples. DualPrompt presents a novel approach to attach complementary prompts to the pre-trained backbone, and then formulates the objective as learning task-invariant and task-specific "instructions". With extensive experimental validation, DualPrompt consistently sets state-of-the-art performance under the challenging class-incremental setting. In particular, DualPrompt outperforms recent advanced continual learning methods with relatively large buffer sizes. We also introduce a more challenging benchmark, Split ImageNet-R, to help generalize rehearsal-free continual learning research. Source code is available at https://github.com/google-research/l2p. View details
    No Results Found