Jump to Content
Rolf Jagerman

Rolf Jagerman

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Regression Compatible Listwise Objectives for Calibrated Ranking with Binary Relevance
    Pratyush Kar
    Bing-Rong Lin
    Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (2023)
    Preview abstract As Learning-to-Rank (LTR) approaches primarily seek to improve ranking quality, their output scores are not scale-calibrated by design. This fundamentally limits LTR usage in score-sensitive applications. Though a simple multi-objective approach that combines a regression and a ranking objective can effectively learn scale-calibrated scores, we argue that the two objectives are not necessarily compatible, which makes the trade-off less ideal for either of them. In this paper, we propose a practical regression compatible ranking (RCR) approach that achieves a better trade-off, where the two ranking and regression components are proved to be mutually aligned. Although the same idea applies to ranking with both binary and graded relevance, we mainly focus on binary labels in this paper. We evaluate the proposed approach on several public LTR benchmarks and show that it consistently achieves either best or competitive result in terms of both regression and ranking metrics, and significantly improves the Pareto frontiers in the context of multi-objective optimization. Furthermore, we evaluated the proposed approach on YouTube Search and found that it not only improved the ranking quality of the production pCTR model, but also brought gains to the click prediction accuracy. The proposed approach has been successfully deployed in the YouTube production system. View details
    RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses
    Jianmo Ni
    Proc. of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR) (2023)
    Preview abstract Pretrained language models such as BERT have been shown to be exceptionally effective for text ranking. However, there are limited studies on how to leverage more powerful sequence-to-sequence models such as T5. Existing attempts usually formulate text ranking as a classification problem and rely on postprocessing to obtain a ranked list. In this paper, we propose RankT5 and study two T5-based ranking model structures, an encoder-decoder and an encoder-only one, so that they not only can directly output ranking scores for each query-document pair, but also can be fine-tuned with "pairwise" or "listwise" ranking losses to optimize ranking performance. Our experiments show that the proposed models with ranking losses can achieve substantial ranking performance gains on different public text ranking data sets. Moreover, ranking models fine-tuned with listwise ranking losses have better zero-shot ranking performance on out-of-domain data than models fine-tuned with classification losses. View details
    Preview abstract The distillation of ranking models has become an important topic in both academia and industry. In recent years, several advanced methods have been proposed to tackle this problem, often leveraging ranking information from teacher rankers that is absent in traditional classification settings. To date, there is no well-established consensus on how to evaluate this class of models. Moreover, inconsistent benchmarking on a wide range of tasks and datasets make it difficult to assess or invigorate advances in this field. This paper first examines representative prior arts on ranking distillation, and raises three questions to be answered around methodology and reproducibility. To that end, we propose a systematic and unified benchmark, Ranking Distillation Suite (RD-Suite), which is a suite of tasks with 4 large realworld datasets, encompassing two major modalities (textual and numeric) and two applications (standard distillation and distillation transfer). RD-Suite consists of benchmark results that challenge some of the common wisdom in the field, and the release of datasets with teacher scores and evaluation scripts for future research. RD-Suite paves the way towards better understanding of ranking distillation, facilities more research in this direction, and presents new challenges. View details
    On Optimizing Top-K Metrics for Neural Ranking Models
    Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (2022), 2303–2307
    Preview abstract Top-K metrics such as NDCG@K are frequently used to evaluate ranking performance. The traditional tree-based models such as LambdaMART, which are based on Gradient Boosted Decision Trees (GBDT), are designed to optimize NDCG@K using the LambdaRank losses. Recently, there is a good amount of research interest on neural ranking models for learning-to-rank tasks. These models are fundamentally different from the decision tree models and behave differently with respect to different loss functions. For example, the most popular ranking losses used in neural models are the Softmax loss and the GumbelApproxNDCG loss. These losses do not connect to top-K metrics such as NDCG@K naturally. It remains a question on how to effectively optimize NDCG@K for neural ranking models. In this paper, we follow the LambdaLoss framework and design novel and theoretically sound losses for NDCG@K metrics, while the original LambdaLoss paper can only do so using an unsound heuristic. We study the new losses on the LETOR benchmark datasets and show that the new losses work better than other losses for neural ranking models. View details
    Rax: Composable Learning-to-Rank using JAX
    Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2022), 3051–3060
    Preview abstract Rax is a library for composable Learning-to-Rank (LTR) written entirely in JAX. The goal of Rax is to facilitate easy prototyping of LTR systems by leveraging the flexibility and simplicity of JAX. Rax provides a diverse set of popular ranking metrics and losses that integrate well with the rest of the JAX ecosystem. Furthermore, Rax implements a system of ranking-specific function transformations which allows fine-grained customization of ranking losses and metrics. Most notably Rax provides approx_t12n: a function transformation (t12n) that can transform any of our ranking metrics into an approximate and differentiable form that can be optimized. This provides a systematic way to directly optimize neural ranking models for ranking metrics that are not easily optimizable in other libraries. We empirically demonstrate the effectiveness of Rax by benchmarking neural models implemented using Flax and trained using Rax on two popular LTR benchmarks: WEB30K and Istella. Furthermore, we show that integrating ranking losses with T5, a large language model, can improve overall ranking performance on the MS MARCO passage ranking task. We are sharing the Rax library with the open source community as part of the larger JAX ecosystem at https://github.com/google/rax. View details
    Preview abstract We describe how we built three recommendation products from scratch at Google Chrome Web Store, namely context-based recommendations, related extension recommendations, and personalized recommendations. Unlike most existing papers that focus on novel algorithms, this paper focuses on sharing practical experiences building large scale recommender systems under various real-world constraints, such as privacy constraints, data sparsity issues, highly skewed data distribution, and product design choices, such as user interface. We show how these constraints make standard approaches difficult to succeed in practice. We share success stories that turn very negative live metrics to very positive, by introducing 1) how we use interpretable neural models to bootstrap the systems, helps identifying pipeline issues, and paves way for more advanced models. 2) A new item-item based recommendation algorithm that works under highly skewed data distributions, and 3) how two products can help bootstrapping the third one, which significantly reduces development cycles and bypasses various real-world difficulties. All the explorations in this work are verified in live traffic on millions of users. We believe the findings in this work can help practitioners to bootstrap and build large-scale recommender systems. View details
    Improving Cloud Storage Search with User Activity
    Proceedings of the 14th International Conference on Web Search and Data Mining (WSDM '21), ACM (2021)
    Preview abstract Cloud-based file storage platforms such as Google Drive are widely used as a means for storing, editing and sharing personal and organizational documents. In this paper, we improve search ranking quality for cloud storage platforms by utilizing user activity logs. Different from search logs, activity logs capture general document usage activity beyond search, such as opening, editing and sharing documents. We propose to automatically learn text embeddings that are effective for search ranking from activity logs. We develop a novel co-access signal, i.e., whether two documents were accessed by a user around the same time, to train deep semantic matching models that are useful for improving the search ranking quality. We confirm that activity-trained semantic matching models can improve ranking by conducting extensive offline experimentation using Google Drive search and activity logs. To the best of our knowledge, this is the first work to examine the benefits of leveraging document usage activity at large scale for cloud storage search; as such it can shed light on using such activity in scenarios where direct collection of search-specific interactions (e.g., query and click logs) may be expensive or infeasible. View details
    No Results Found