Jump to Content
Sen Zhao

Sen Zhao

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Multidimensional Shape Constraints
    Maya R. Gupta
    Erez Louidor
    Olexander Mangylov
    Nobuyuki Morioka
    Taman Narayan
    ICML 2020 (2020)
    Preview abstract We propose new multi-input shape constraints across four intuitive categories: complements, diminishers, dominance, and unimodality constraints. We show these shape constraints can be checked and even enforced when training machine-learned models for linear models, generalized additive models, and the nonlinear function class of multi-layer lattice models. Toy examples and real-world experiments illustrate how the different shape constraints can be used to increase interpretability and better regularize machine-learned models. View details
    Metric-Optimized Example Weights
    Mahdi Milani Fard
    Maya Gupta
    Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, California, USA (2019), pp. 7533-7542
    Preview abstract Real-world machine learning applications often have complex test metrics, and may have training and test data that are not identically distributed. Motivated by known connections between complex test metrics and cost-weighted learning, we propose addressing these issues by using a weighted loss function with a standard loss, where the weights on the training examples are learned to optimize the test metric on a validation set. These metric-optimized example weights can be learned for any test metric, including black box and customized ones for specific applications. We illustrate the performance of the proposed method on diverse public benchmark datasets and real-world applications. We also provide a generalization bound for the method. View details
    Advances and Open Problems in Federated Learning
    Brendan Avent
    Aurélien Bellet
    Mehdi Bennis
    Arjun Nitin Bhagoji
    Graham Cormode
    Rachel Cummings
    Rafael G.L. D'Oliveira
    Salim El Rouayheb
    David Evans
    Josh Gardner
    Adrià Gascón
    Phillip B. Gibbons
    Marco Gruteser
    Zaid Harchaoui
    Chaoyang He
    Lie He
    Zhouyuan Huo
    Justin Hsu
    Martin Jaggi
    Tara Javidi
    Gauri Joshi
    Mikhail Khodak
    Jakub Konečný
    Aleksandra Korolova
    Farinaz Koushanfar
    Sanmi Koyejo
    Tancrède Lepoint
    Yang Liu
    Prateek Mittal
    Richard Nock
    Ayfer Özgür
    Rasmus Pagh
    Ramesh Raskar
    Dawn Song
    Weikang Song
    Sebastian U. Stich
    Ziteng Sun
    Florian Tramèr
    Praneeth Vepakomma
    Jianyu Wang
    Li Xiong
    Qiang Yang
    Felix X. Yu
    Han Yu
    Arxiv (2019)
    Preview abstract Federated learning (FL) is a machine learning setting where many clients (e.g., mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g., service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and mitigates many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents a comprehensive list of open problems and challenges. View details
    Kernel-Penalized Regression for Analysis of Microbiome Data
    Timothy W. Randolph
    Wade Copeland
    Meredith Hullar
    Ali Shojaie
    Annals of Applied Statistics, vol. 12 (2018), pp. 540-566
    Preview abstract The analysis of human microbiome data is often based on dimension reduced graphical displays and clusterings derived from vectors of microbial abundances in each sample. Common to these ordination methods is the use of biologically motivated definitions of similarity. Principal coordinate analysis, in particular, is often performed using ecologically defined distances, allowing analyses to incorporate context-dependent, non-Euclidean structure. In this paper, we go beyond dimension-reduced ordination methods and describe a framework of high-dimensional regression models that extends these distance-based methods. In particular, we use kernel-based methods to show how to incorporate a variety of extrinsic information, such as phylogeny, into penalized regression models that estimate taxon specific associations with a phenotype or clinical outcome. Further, we show how this regression framework can be used to address the compositional nature of multivariate predictors comprised of relative abundances; that is, vectors whose entries sum to a constant. We illustrate this approach with several simulations using data from two recent studies on gut and vaginal microbiomes. We conclude with an application to our own data, where we also incorporate a significance test for the estimated coefficients that represent associations between microbial abundance and a percent fat. View details
    No Results Found